Introduction 0000000	The lower bound result	Applications / examples	Final remarks

On error bounds for L_{∞} -approximation of smooth functions

Markus Weimar

Friedrich-Schiller-University Jena

SAFS'10 - International Workshop on Smoothness, Approximation and Function Spaces, Oppurg October 14th, 2010

Introduction •000000	The lower bound result	Applications / examples	Final remarks
Some motiva	tion		

In the 2nd talk today we saw that for the approximation of d-variate, smooth functions in the norm of L_{∞} we need an exponential amount of information $n(\varepsilon, d)$ to obtain a worst case error $\varepsilon = e(n, d) < 1$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction ●○○○○○○	The lower bound result	Applications / examples	Final remarks
Some motiva	tion		

In the 2nd talk today we saw that for the approximation of d-variate, smooth functions in the norm of L_{∞} we need an exponential amount of information $n(\varepsilon, d)$ to obtain a worst case error $\varepsilon = e(n, d) < 1$. In detail, we have

$$e(n,d) = 1$$
 $\forall n < 2^{\lfloor d/2 \rfloor}$ $\forall d \in \mathbb{N}$,

or

$$n(\varepsilon, d) \ge 2^{\lfloor d/2 \rfloor} \quad \forall \varepsilon \in (0, 1) \quad \forall d \in \mathbb{N}.$$

So the problem suffers from the so-called *curse of dimensionality* and is *intractable*. See Novak & Woźniakowski (2009).

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction ○●○○○○○	The lower bound result	Applications / examples	Final remarks
Therefore, w	e introduce weights in or	der to shrink the function	n

Therefore, we introduce **weights** in order to shrink the function space and break this exponential dependence on the dimension d. In the case of Hilbert spaces this idea goes back to Sloan and Woźniakowski (1998). Additionally, for Banach spaces discussed here we need essentially new proof techniques.

We will present a lower bound result which relates the worst case error to the used weights and show its application on important examples.

For simplicity we restrict ourself to the easiest case in this talk.

Introduction 000000	The lower bound result	Applications / examples	Final remarks
Overview			

Introduction

- The weighted approximation problem
- An error criterion
- Notions of tractability
- 2 The lower bound result
- 3 Applications / examples
 - Unweighted case
 - Finite-order weights
 - Product weights

Final remarks

Introduction	The lower bo	und result	Applications /	examples	Final remarks

The weighted approximation problem

Let $d\in\mathbb{N}$ (dimension), as well as $\Omega=[0,1]^d$ and

$$\begin{split} \mathcal{F}_{d}^{\gamma}(\Omega) &:= \{f \colon \Omega \to \mathbb{R} \, | \, f \in C^{(1,\dots,1)}(\Omega), \, \left\| f \right\|_{\gamma} < \infty \}, \\ & \left\| f \right\|_{\gamma} := \max_{\alpha \in \{0,1\}^{d}} \frac{1}{\gamma_{\alpha}} \left\| D^{\alpha} f \right\|_{\infty} \end{split}$$

with a fixed weight $\gamma = (\gamma_{\alpha})_{\alpha \in \{0,1\}^d}$ where $\gamma_{\alpha} \ge 0$ and $\gamma_0 = 1$.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Introduction	The lower b	ound result	Applications /	examples	Final remarks

The weighted approximation problem

Let $d\in\mathbb{N}$ (dimension), as well as $\Omega=[0,1]^d$ and

$$\begin{split} F_d^{\gamma}(\Omega) &:= \{ f \colon \Omega \to \mathbb{R} \, | \, f \in C^{(1,\dots,1)}(\Omega), \, \left\| f \right\|_{\gamma} < \infty \}, \\ & \left\| f \right\|_{\gamma} := \max_{\alpha \in \{0,1\}^d} \frac{1}{\gamma_{\alpha}} \left\| D^{\alpha} f \right\|_{\infty} \end{split}$$

with a fixed weight $\gamma = (\gamma_{\alpha})_{\alpha \in \{0,1\}^d}$ where $\gamma_{\alpha} \ge 0$ and $\gamma_0 = 1$. For every $d \in \mathbb{N}$ approximate

$$\operatorname{Id}_d \colon F^{\gamma}_d(\Omega) \to L_{\infty}(\Omega), \quad \operatorname{Id}_d(f) := f$$

by operators $S_{n,d} = \phi \circ N$ using $n \in \mathbb{N}_0$ pieces of information from $f \in F_d^\gamma$,

$$N\colon F_d^{\gamma}\to\mathbb{R}^n,\qquad \phi\colon\mathbb{R}^n\to L_{\infty}.$$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Introduction 0000000	The lower bound result	Applications / examples	Final remarks

Note that

- *F*^γ_d is an infinite dimensional Banach space, mainly characterized by the weights *γ*,
- $\|f\|_{\gamma} \leq 1 \iff \|D^{\alpha}f\|_{\infty} \leq \gamma_{\alpha} \text{ for all } \alpha \in \{0,1\}^d$ (" $\frac{0}{0} := 0$ "),

・ 回 ト ・ ヨ ト ・ ヨ ト

크

Introduction	The lower bound result	Applications / examples	Final remarks

Note that

- *F*^γ_d is an infinite dimensional Banach space, mainly characterized by the weights *γ*,
- $\|f\|_{\gamma} \leq 1 \iff \|D^{\alpha}f\|_{\infty} \leq \gamma_{\alpha} \text{ for all } \alpha \in \{0,1\}^d$ (" $\frac{0}{0} := 0$ "),
- $N = N_{n,d}$ collects the *information*; should be a continuous mapping (e.g. linear functionals / functions values)
- $\phi = \phi_{n,d}$ creates the approximation; can be chosen arbitrarily
- \Rightarrow different classes of weights & different types of algorithms possible

(本間) (本語) (本語) (二語

Introduction ○○○○○●○	The lower bound result	Applications / examples	Final remarks
'Good' approx	ximation?!		

(Absolute) worst case error for algorithm $S_{n,d}$:

$$e^{\operatorname{wor}}(S_{n,d}) := \sup_{\substack{f \in F_d^{\gamma} \\ \|f\|_{\gamma} \leq 1}} \|\operatorname{Id}_d(f) - S_{n,d}(f) | L_{\infty}(\Omega) \|.$$

n-th minimal error in dimension d:

$$e(n,d) := \inf_{S_{n,d} \in \Lambda_{n,d}} e^{\operatorname{wor}}(S_{n,d}).$$

Information complexity:

$$n(\varepsilon, d) := \inf\{n \in \mathbb{N}_0 \mid e(n, d) \le \varepsilon\}, \quad \varepsilon > 0.$$

- (三) → 三三

Introduction	The lower bound result	Applications / examples	Final remarks
'Good' approx	kimation?!		

(Absolute) worst case error for algorithm $S_{n,d}$:

$$e^{\operatorname{wor}}(S_{n,d}) := \sup_{\substack{f \in F_d^{\gamma} \\ \|f\|_{\gamma} \leq 1}} \|\operatorname{Id}_d(f) - S_{n,d}(f) | L_{\infty}(\Omega) \|.$$

n-th minimal error in dimension d:

$$e(n,d) := \inf_{S_{n,d}\in\Lambda_{n,d}} e^{\mathrm{wor}}(S_{n,d}).$$

Information complexity:

$$n(\varepsilon, d) := \inf\{n \in \mathbb{N}_0 \mid e(n, d) \le \varepsilon\}, \quad \varepsilon > 0.$$

Note that $S_{0,d} := 0 \in L_{\infty}$. Therefore, for every $n \in \mathbb{N}_0$ and $d \in \mathbb{N}$ we have the trivial upper bound

$$e(n,d) \leq e^{\mathrm{wor}}(S_{0,d}) = \left\| \mathrm{Id}_d \colon F_d^{\gamma} \to L_{\infty} \right\| = \sup_{\|f\|_{\gamma} \leq 1} \|f\|_{\infty} = \gamma_0 = 1.$$

Introduction ○○○○○○●	The lower bound result	Applications / examples	Final remarks
Classes of tra	ctability		

• strongly polynomially tractable (SPT), iff

 $\exists C, p > 0 \text{ s.t. } \forall d \in \mathbb{N} \ \forall \varepsilon \in (0,1): \quad n(\varepsilon, d) \leq C \cdot \varepsilon^{-p}$

イロト イヨト イヨト イヨト

臣

Introduction ○○○○○●	The lower bound result	Applications / examples	Final remarks
Classes of tr	actability		

• strongly polynomially tractable (SPT), iff

 $\exists C, p > 0 \text{ s.t. } \forall d \in \mathbb{N} \ \forall \varepsilon \in (0,1): \quad n(\varepsilon,d) \leq C \cdot \varepsilon^{-p}$

Image: A match the second s

- ▲ 문 ▶ - 문

Introduction ○○○○○●	The lower bound result	Applications / examples	Final remarks
Classes of tr	actability		

• strongly polynomially tractable (SPT), iff

 $\exists C, p > 0 \text{ s.t. } \forall d \in \mathbb{N} \ \forall \varepsilon \in (0,1): \quad n(\varepsilon,d) \leq C \cdot \varepsilon^{-p}$

- polynomially tractable (PT), iff
 ∃C, p, q > 0 s.t ∀d ∈ N ∀ε ∈ (0, 1) : n(ε, d) ≤ C ⋅ ε^{-p} ⋅ d^q
- weakly tractable (WT), iff

$$\lim_{d+\varepsilon^{-1}\to\infty}\frac{\ln n(\varepsilon,d)}{d+\varepsilon^{-1}}=0.$$

イロン イヨン イヨン ・ ヨン

3

Introduction ○○○○○●	The lower bound result	Applications / examples	Final remarks
Classes of t	ractability		

• strongly polynomially tractable (SPT), iff

 $\exists C, p > 0 \text{ s.t. } \forall d \in \mathbb{N} \forall \varepsilon \in (0,1): \quad n(\varepsilon,d) \leq C \cdot \varepsilon^{-p}$

- polynomially tractable (PT), iff
 ∃C, p, q > 0 s.t ∀d ∈ N ∀ε ∈ (0, 1) : n(ε, d) ≤ C ⋅ ε^{-p} ⋅ d^q
- weakly tractable (WT), iff

$$\lim_{d+\varepsilon^{-1}\to\infty}\frac{\ln n(\varepsilon,d)}{d+\varepsilon^{-1}}=0.$$

The problem suffers from the curse of dimensionality (COD), iff

$$n(\varepsilon, d) \ge c \cdot C^d$$
, for some $\varepsilon > 0, c > 0, C > 1$.

Introduction ○○○○○○●	The lower bound result	Applications / examples	Final remarks
Classes of tra	actability		

• strongly polynomially tractable (SPT), iff

 $\exists C, p > 0 \text{ s.t. } \forall d \in \mathbb{N} \forall \varepsilon \in (0,1): \quad n(\varepsilon,d) \leq C \cdot \varepsilon^{-p}$

- polynomially tractable (PT), iff
 ∃C, p, q > 0 s.t ∀d ∈ N ∀ε ∈ (0, 1) : n(ε, d) ≤ C ⋅ ε^{-p} ⋅ d^q
- weakly tractable (WT), iff

$$\lim_{d+\varepsilon^{-1}\to\infty}\frac{\ln n(\varepsilon,d)}{d+\varepsilon^{-1}}=0.$$

The problem suffers from the curse of dimensionality (COD), iff

$$\mathsf{m}(arepsilon, d) \geq c \cdot C^d, \quad ext{ for some } arepsilon > 0, c > 0, C > 1.$$

Obviously,

$$\mathsf{SPT} \Longrightarrow \mathsf{PT} \Longrightarrow \mathsf{WT} \Longrightarrow \mathsf{no} \mathsf{COD}.$$

Introduction 0000000	The lower bound result	Applications / examples	Final remarks

Theorem

Assume $d \in \mathbb{N}$, $\omega \in \mathbb{N}_0$, $\lambda > 0$ and let γ be a weight with

$$\gamma_{\alpha} \geq \lambda^{|\alpha|}$$
 if $\alpha \in \{0,1\}^d$ and $|\alpha| \leq \omega$.

Then for the n-th minimal error of L_{∞} -approximation on $F_d^{\gamma}([0,1]^d)$ we have

$$e(n,d) \geq 1$$
 for all $n < \sum_{m=0}^{\min\{\omega,d\}} {\lfloor d/l
floor}{m},$

where $I = \lfloor 2/\lambda \rfloor$.

・ロト ・回ト ・ヨト

< 注→ 注

Introduction 0000000	The lower bound result	Applications / examples ●○○○	Final remarks
1) Unweight	ed case		

For $\gamma_{\alpha} \equiv 1$ the problem is unweighted. We set $\lambda := 1$ and $\omega := d$.

Then we have the **curse of dimensionality**, because

$$e(n,d) = 1$$
 for all $n < \sum_{m=0}^{d} {\lfloor d/2 \rfloor \choose m} = 2^{\lfloor d/2 \rfloor}.$

Therefore, the theorem generalizes the results known before. (In fact Novak & Woźniakowski considered an even smaller space of C^{∞} -functions but this doesn't matter)

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	The lower bound result	Applications / examples	Final remarks
2) Einite or	der weights		

2) Finite-order weights

Suppose the weights γ fulfill a *finite-order property*, i.e.

$$|\alpha| > \omega \quad \Longrightarrow \quad \gamma_{\alpha} = \mathbf{0},$$

for a fixed $\omega < d$.

In this case we have for $f\in \mathsf{F}^\gamma_d(\Omega)$ the representation

$$f = \sum_{\substack{\mathfrak{u} \subset \{1, \dots, d\}, \\ \#\mathfrak{u} \leq \omega}} f_{\mathfrak{u}},$$

where $f_{\mathfrak{u}}$ only depends on at most $\#\mathfrak{u} \leq \omega$ variables. Applications can be found in physics, e.g. Coulomb potential.

Introduction	The lower bound result	Applications / examples	Final remarks
2) Finite or	der weights		

2) Finite-order weights

Suppose the weights γ fulfill a *finite-order property*, i.e.

$$|\alpha| > \omega \quad \Longrightarrow \quad \gamma_{\alpha} = \mathbf{0},$$

for a fixed $\omega < d$.

In this case we have for $f \in F^{\gamma}_{d}(\Omega)$ the representation

$$f = \sum_{\substack{\mathfrak{u} \subset \{1, \dots, d\}, \\ \#\mathfrak{u} \leq \omega}} f_{\mathfrak{u}},$$

where $f_{\mathfrak{u}}$ only depends on at most $\#\mathfrak{u} \leq \omega$ variables. Applications can be found in physics, e.g. Coulomb potential. The theorem yields

$$e(n,d) = 1$$
 for all $n < \sum_{m=0}^{\omega} {\lfloor d/l
floor}{m \choose m} \sim d^{\omega},$

where the constants depend on γ but not on d. Hence, we have no strong polynomial tractability.

Introduction 0000000	The lower bound result	Applications / examples ○○●○	Final remarks
3) Product w	eights		

Assume the weights γ have a product structure, i.e.

$$\gamma_{\alpha} = \prod_{k=1}^{d} (\gamma_{d,k})^{\alpha_k}, \quad \alpha \in \{0,1\}^d$$

with generators

$$1 \geq \gamma_{d,1} \geq \gamma_{d,2} \geq \ldots \geq \gamma_{d,d} > 0.$$

Here $\gamma_{d,k}$ moderates the influence of x_k .

A result similar to the mentioned theorem, some additional calculations and upper error bound results (due to Kuo, Wasilkowski and Woźniakowski) lead to:

Corollary

For the information complexity of L_{∞} -approximation on $F_d^{\gamma}(\Omega)$ in the case of product weights we have

$$n(\varepsilon, d) \geq 2^{\left\lfloor \frac{1}{3} \sum_{k=1}^{d} \gamma_{d,k} \right\rfloor},$$

for all $d \in \mathbb{N}$ and $\varepsilon \in (0, 1)$.

Moreover, the following statements are equivalent:

- The problem is weakly tractable.
- The problem does not suffer from the curse of dimensionality.
- There exists $t \in (0,1)$ such that

$$\lim_{d\to\infty}\frac{1}{d}\sum_{k=1}^d\gamma_{d,k}^t=0.$$

イロト イヨト イヨト イヨト

Introduction 0000000	The lower bound result	Applications / examples	Final remarks ●○
Final remarks			

In general the absence of the curse of dimensionality does NOT imply weak tractability!

The last condition is a typical characterization of weak tractability for problems on Hilbert spaces.

Note that everything also works in a more general setting.

SUMMARY:

- **unweighted** case \implies **curse of dimensionality** (even for C^{∞} -functions)
- weighted case => different types of tractability (depending on the weights)

Introduction 0000000	The lower bound result	Applications / examples	Final remarks ○●
References			

- Kuo, Wasilkowski, Woźniakowski Multivariate L_∞ approximation in the worst case setting over reproducing kernel Hilbert spaces, Journal of Approximation Theory, **152**, (2008), 135-160
- Novak, Woźniakowski Approximation of infinitely differentiable multivariate functions is intractable, Journal of Complexity, 25, (2009), 398-404
- Novak, Woźniakowski *Tractability of Multivariate Problems, Volume I: Linear Information*, European Mathematical Society, Zürich, 2008.

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction 0000000	The lower bound result	Applications / examples	Final remarks ○●
References			

- Kuo, Wasilkowski, Woźniakowski Multivariate L_∞ approximation in the worst case setting over reproducing kernel Hilbert spaces, Journal of Approximation Theory, **152**, (2008), 135-160
- Novak, Woźniakowski Approximation of infinitely differentiable multivariate functions is intractable, Journal of Complexity, 25, (2009), 398-404
- Novak, Woźniakowski *Tractability of Multivariate Problems, Volume I: Linear Information*, European Mathematical Society, Zürich, 2008.

Thank you for your attention!