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Some motivation

In the 2nd talk today we saw that for the approximation of
d-variate, smooth functions in the norm of L∞ we need an
exponential amount of information n(ε, d) to obtain a worst case
error ε = e(n, d) < 1.

In detail, we have

e(n, d) = 1 ∀n < 2bd/2c ∀d ∈ N,

or

n(ε, d) ≥ 2bd/2c ∀ε ∈ (0, 1) ∀d ∈ N.

So the problem suffers from the so-called curse of dimensionality
and is intractable. See Novak & Woźniakowski (2009).
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Therefore, we introduce weights in order to shrink the function
space and break this exponential dependence on the dimension d .
In the case of Hilbert spaces this idea goes back to Sloan and
Woźniakowski (1998). Additionally, for Banach spaces discussed
here we need essentially new proof techniques.

We will present a lower bound result which relates the worst case
error to the used weights and show its application on important
examples.

For simplicity we restrict ourself to the easiest case in this talk.
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The weighted approximation problem
Let d ∈ N (dimension), as well as Ω = [0, 1]d and

F γd (Ω) := {f : Ω→ R | f ∈ C (1,...,1)(Ω), ‖f ‖γ <∞},

‖f ‖γ := max
α∈{0,1}d

1
γα
‖Dαf ‖∞

with a fixed weight γ = (γα)α∈{0,1}d where γα ≥ 0 and γ0 = 1.

For every d ∈ N approximate

Idd : F γd (Ω)→ L∞(Ω), Idd (f ) := f

by operators Sn,d = φ ◦ N using n ∈ N0 pieces of information from
f ∈ F γd ,

N : F γd → Rn, φ : Rn → L∞.
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Note that

F γd is an infinite dimensional Banach space, mainly
characterized by the weights γ,
‖f ‖γ ≤ 1 ⇐⇒ ‖Dαf ‖∞ ≤ γα for all α ∈ {0, 1}d

(“0
0 := 0”),

N = Nn,d collects the information; should be a continuous
mapping (e.g. linear functionals / functions values)
φ = φn,d creates the approximation; can be chosen arbitrarily

⇒ different classes of weights & different types of algorithms
possible
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’Good’ approximation?!
(Absolute) worst case error for algorithm Sn,d :

ewor(Sn,d ) := sup
f ∈Fγd
‖f ‖γ≤1

‖Idd (f )− Sn,d (f ) | L∞(Ω)‖ .

n-th minimal error in dimension d :
e(n, d) := inf

Sn,d∈Λn,d
ewor(Sn,d ).

Information complexity :
n(ε, d) := inf{n ∈ N0 | e(n, d) ≤ ε}, ε > 0.

Note that S0,d := 0 ∈ L∞. Therefore, for every n ∈ N0 and d ∈ N
we have the trivial upper bound
e(n, d) ≤ ewor(S0,d ) =

∥∥Idd : F γd → L∞
∥∥ = sup

‖f ‖γ≤1
‖f ‖∞ = γ0 = 1.
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Classes of tractability
The problem is called

strongly polynomially tractable (SPT), iff
∃C , p > 0 s.t. ∀d ∈ N ∀ε ∈ (0, 1) : n(ε, d) ≤ C · ε−p

polynomially tractable (PT), iff
∃C , p, q > 0 s.t ∀d ∈ N ∀ε ∈ (0, 1) : n(ε, d) ≤ C · ε−p · dq

weakly tractable (WT), iff

lim
d+ε−1→∞

ln n(ε, d)

d + ε−1 = 0.

The problem suffers from the curse of dimensionality (COD), iff
n(ε, d) ≥ c · Cd , for some ε > 0, c > 0,C > 1.

Obviously,
SPT =⇒ PT =⇒WT =⇒ no COD.
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Theorem
Assume d ∈ N, ω ∈ N0, λ > 0 and let γ be a weight with

γα ≥ λ|α| if α ∈ {0, 1}d and |α| ≤ ω.

Then for the n-th minimal error of L∞-approximation on
F γd ([0, 1]d ) we have

e(n, d) ≥ 1 for all n <
min{ω,d}∑

m=0

(
bd/lc
m

)
,

where l = d2/λe.
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1) Unweighted case

For γα ≡ 1 the problem is unweighted. We set λ := 1 and ω := d .

Then we have the curse of dimensionality, because

e(n, d) = 1 for all n <
d∑

m=0

(
bd/2c
m

)
= 2bd/2c.

Therefore, the theorem generalizes the results known before.
(In fact Novak & Woźniakowski considered an even smaller space
of C∞-functions but this doesn’t matter)
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2) Finite-order weights
Suppose the weights γ fulfill a finite-order property, i.e.

|α| > ω =⇒ γα = 0,
for a fixed ω < d .
In this case we have for f ∈ F γd (Ω) the representation

f =
∑

u⊂{1,...,d},
#u≤ω

fu,

where fu only depends on at most #u ≤ ω variables. Applications
can be found in physics, e.g. Coulomb potential.

The theorem yields

e(n, d) = 1 for all n <
ω∑

m=0

(
bd/lc
m

)
∼ dω,

where the constants depend on γ but not on d . Hence, we have
no strong polynomial tractability.
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3) Product weights

Assume the weights γ have a product structure, i.e.

γα =
d∏

k=1
(γd ,k)αk , α ∈ {0, 1}d

with generators

1 ≥ γd ,1 ≥ γd ,2 ≥ . . . ≥ γd ,d > 0.

Here γd ,k moderates the influence of xk .

A result similar to the mentioned theorem, some additional
calculations and upper error bound results (due to Kuo,
Wasilkowski and Woźniakowski) lead to:
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Corollary
For the information complexity of L∞-approximation on F γd (Ω) in
the case of product weights we have

n(ε, d) ≥ 2
⌊

1
3
∑d

k=1 γd,k

⌋
,

for all d ∈ N and ε ∈ (0, 1).
Moreover, the following statements are equivalent:

The problem is weakly tractable.
The problem does not suffer from the curse of dimensionality.
There exists t ∈ (0, 1) such that

lim
d→∞

1
d

d∑
k=1

γt
d ,k = 0.
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Final remarks

In general the absence of the curse of dimensionality does NOT
imply weak tractability!

The last condition is a typical characterization of weak tractability
for problems on Hilbert spaces.

Note that everything also works in a more general setting.

SUMMARY:
unweighted case =⇒ curse of dimensionality (even for
C∞-functions)
weighted case =⇒ different types of tractability (depending
on the weights)
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