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Eigenvalues of compact operators

Let B : X → X compact, linear with eigenvalue sequence {µk(B)}k∈N,
counted with respect to their algebraic multiplicity and ordered by
decreasing modulus. If B has only finitely many distinct eigenvalues
different from zero, we put µm(B) = 0 for k sufficiently large.
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1 It is known that µk(B) → 0 if k → ∞. What is the asymptotic
behaviour of µk(B) if k → ∞?

2 Asymptotic behaviour of eigenvalues of Dirichlet Laplacian on
domains. If λk eigenvalues of −∆ then λk = µ−1

k
(B) with compact

B = (−∆)−1 if −∆ has compact resolvent.
3 Negative spectrum of Schödinger type operators

Hγ = (id −∆)κ/2 − γV (x), V (x) ≥ 0, γ > 0 .

#{σp(Hγ) ∩ (−∞, 0]} as γ → ∞
The Birman-Schwinger principle relates the behaviour of
#{σp(Hγ) ∩ (−∞, 0]} to the behaviour of µm(B) for compact
operator B =

√
V (id −∆)−κ/2

√
V .
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Some of the presented estimates can be improved using the Weyl numbers
of Sobolev embeddings (in particular if one works with weithed function
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Let B ∈ L(X , Y ) and BX be the closed unit ball in X .
Entropy numbers. The k-th entropy number of B , k ∈ N, is

ek(B) = inf{ε > 0 : B(BX ) can be covered by 2k−1 balls of radius ε in Y }.

B : X → Y is compact ⇔ limk→∞ ek(B) = 0 .

Approximation numbers. The k-th approximation number of B is

ak(B) := inf{‖B − A‖ : A ∈ L(X , Y ), rank(A) < k} .

Weyl numbers. The k-th Weyl number of B is

xk(B) := sup{ak(BS) : S ∈ L(ℓ2, X ) with ‖S‖ ≤ 1}.

Mutiplicativity property - sk+m−1(BA) ≤ sk(B)sm(A); s1(B) = ‖B‖,
where sk = ek or sk = xk
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(
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√
2e

( k
∏
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xj(B)

)1/k

for all k ∈ N,

Problem: How to calculate asymptotic behaviour of ek(B), xk(B) if
k → ∞? Hint: to factorize B though compact Sobolev embeddings and to
calculate ek or xk for the embeddings.
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Preliminaries

Function spaces - definitions

1 Besov spaces, s ∈ R and 0 < p, q ≤ ∞,

Bs
p,q(R

n) = {f ∈ S ′ : ‖f |Bs
p,q‖ =

(

∞
∑

j=0

2sqj‖F−1ϕjF f ‖q
p

)1/q

< ∞}.
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B̄s
p,q(Ω) =
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{f : f = g |Ω, g ∈ Bs
p,q(R

n) suppg ⊂ Ω} if s > 0,

‖f |Bs
p,q‖ = inf ‖g |Bs

p,q‖ .
3 Weighted Besov spaces with a Muckenhaupt weight w .

Lp(R
n, w) := {f :

∫

|f (x)|pw(x)dx < ∞},

‖f |Bs
p,q(R

n, w)‖ =
(

∞
∑

j=0

2sqj‖F−1ϕjF f |Lp(R
n, w)‖q

)1/q
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Let Ω be a bounded domain with sufficiently regular boundary (e.g.
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+
> 0 . (2)

Moreover ek

(

B̄s1
p1,q1

(Ω) →֒ B̄s2
p2,q2

(Ω)
)

∼ k−
s1−s2

n (3)

Let Ω be an unbounded domain (with sufficiently regular boundary).
What can we say about the properties of Sobolev embeddings?

Theorem

If Ω is an unbounded domain with finite Lebesgue measure then the
embedding (1) is compact if and only if (2) holds and the corresponding
entropy numbers satisfy the estimates (3).
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Elliptic operators on quasibounded domains

Entropy numbers of Sobolev embedding on domain

We recall that an unbounded domain Ω in R
n is called quasi-bounded

if
lim

x∈Ω,|x |→∞
dist (x , ∂Ω) = 0 .

Examples

Let α > 0. The open sets ωα, Ωα ⊂ R
2

ωα = {(x , y) ∈ R
2 : |y | < x−α, x > 1} and

Ωα = {(x , y) ∈ R
2 : |y | < |x |−α} are quasi-bounded.

An unbounded domain is not quasi-bounded if, and only if, it contains
infinitely many pairwise disjoint congruent balls.

Theorem

If Ω is not quasi-bounded then the embedding (1) is never compact.
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Elliptic operators on quasibounded domains

Box packing number of an open set

The interesting case - quasi-bounded domains with infinite Lebesgue
measure.
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The interesting case - quasi-bounded domains with infinite Lebesgue
measure. What are the conditions for compactness?What is the
possible asymptotic behaviour of entropy numbers?

A box packing number b(Ω) of an open set Ω. Let

bj(Ω) = sup
{

k :
k

⋃

ℓ=1

Qj ,mℓ
⊂ Ω , Qj ,mℓ

being pairwise disjoint

dyadic cubes of side-length 2−j
}

, j = 0, 1, . . .
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The interesting case - quasi-bounded domains with infinite Lebesgue
measure. What are the conditions for compactness?What is the
possible asymptotic behaviour of entropy numbers?

A box packing number b(Ω) of an open set Ω. Let

bj(Ω) = sup
{

k :
k

⋃

ℓ=1

Qj ,mℓ
⊂ Ω , Qj ,mℓ

being pairwise disjoint

dyadic cubes of side-length 2−j
}

, j = 0, 1, . . .

b(Ω) = sup
{

t ∈ R+ : lim sup
j→∞

bj(Ω)2−jt = ∞
}

. (4)

For any nonempty open set Ω ⊂ R
n we have n ≤ b(Ω) ≤ ∞.

If Ω is of finite measure, then b(Ω) = n.
If Ω is unbounded and not quasi-bounded, then b(Ω) = ∞.
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Elliptic operators on quasibounded domains

Box packing number of an open set - examples

Examples

Let α > 0, ωα, Ωα ⊂ R
2 be as above. Then

b(ωα) =

{

1
α + 1 if 0 < α < 1,

2 if α ≥ 1,
b(Ωα) =

{

1
α + 1 if 0 < α < 1,

α + 1 if α ≥ 1.
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Elliptic operators on quasibounded domains

Box packing number of an open set - examples

Examples

Let α > 0, ωα, Ωα ⊂ R
2 be as above. Then

b(ωα) =

{

1
α + 1 if 0 < α < 1,

2 if α ≥ 1,
b(Ωα) =

{

1
α + 1 if 0 < α < 1,

α + 1 if α ≥ 1.

There are quasi-bounded domains such that b(Ω) = ∞.

L.Skrzypczak (UAM Poznań) Oppurg, October 2010 10 / 24



Elliptic operators on quasibounded domains

Quasi-bounded domains - compactness of embeddings

Theorem

(i) Let b(Ω) < ∞. The embedding

B̄s1
p1,q1

(Ω) →֒ B̄s2
p2,q2

(Ω) (5)

is compact if

δ := s1 −
n

p1
− s2 +

n

p2
>

b(Ω)

p∗
= b(Ω)

( 1

p2
− 1

p1

)

+
. (6)
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+
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If the embedding (5) is compact and 1
p∗

= 0, then δ > 0.

If the embedding (5) is compact and 1
p∗

> 0, then δ ≥ b(Ω)
p∗

.
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p∗
= b(Ω)

( 1

p2
− 1

p1

)

+
. (6)

If the embedding (5) is compact and 1
p∗

= 0, then δ > 0.

If the embedding (5) is compact and 1
p∗

> 0, then δ ≥ b(Ω)
p∗

.
(ii) If b(Ω) = ∞, then the embedding (5) is compact if, and only if,
p1 ≤ p2 and

s1 −
n

p1
− s2 +

n

p2
> 0 . (7)
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Elliptic operators on quasibounded domains

Quasi-bounded domains - entropy numbers of embeddings

Theorem

Let s1 − s2 − n
(

1
p1

− 1
p2

)

>
b(Ω)
p∗

and b(Ω) < ∞. If

0 < lim inf
j→∞

bj(Ω)2−jb(Ω) ≤ lim sup
j→∞

bj(Ω)2−jb(Ω) < ∞ , (8)

then ek

(

B̄s1
p1,q1

(Ω) →֒ B̄s2
p2,q2

(Ω)
)

∼ k−γ (9)

with γ =
s1 − s2
b(Ω)

+
b(Ω) − n

b(Ω)

( 1

p1
− 1

p2

)

.
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Elliptic operators on quasibounded domains

Quasi-bounded domains - entropy numbers of embeddings

Theorem

Let s1 − s2 − n
(

1
p1

− 1
p2

)

>
b(Ω)
p∗

and b(Ω) < ∞. If

0 < lim inf
j→∞

bj(Ω)2−jb(Ω) ≤ lim sup
j→∞

bj(Ω)2−jb(Ω) < ∞ , (8)

then ek

(

B̄s1
p1,q1

(Ω) →֒ B̄s2
p2,q2

(Ω)
)

∼ k−γ (9)

with γ =
s1 − s2
b(Ω)

+
b(Ω) − n

b(Ω)

( 1

p1
− 1

p2

)

.

Corollary

Let Ω be of finite Lebesgue measure. If the embedding is compact, then
γ = s1−s2

n
.

L.Skrzypczak (UAM Poznań) Oppurg, October 2010 12 / 24



Elliptic operators on quasibounded domains

Quasi-bounded domains - inverse entropy problem

What is the possible asymptotic behaviour of entropy numbers of the
compact embedding of the function spaces defined on domains?

L.Skrzypczak (UAM Poznań) Oppurg, October 2010 13 / 24



Elliptic operators on quasibounded domains

Quasi-bounded domains - inverse entropy problem

What is the possible asymptotic behaviour of entropy numbers of the
compact embedding of the function spaces defined on domains?

Theorem

Let s1, s2 ∈ R, 0 < p1, p2 ≤ ∞ and 0 < q1, q2 ≤ ∞. We assume that
s1−s2

n
>

(

1
p1

− 1
p2

)

+
.

For positive real γ, such that s1−s2
n

≥ γ >
(

1
p1

− 1
p2

)

+
, there exists a

quasi-bounded domain Ω in R
n such that

ek

(

B̄s1
p1,q1

(Ω) →֒ B̄s2
p2,q2

(Ω)
)

∼ k−γ , k ∈ N . (10)

If (10) holds for some quasi-bounded domain Ω in R
n and b(Ω) < ∞, then

s1−s2
n

≥ γ >
(

1
p1

− 1
p2

)

+
.
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Elliptic operators on quasibounded domains

Elliptic operators on quasi-bounded domains

Let A(x , D) =
∑

|α|≤2m

aα(x)∂α

be a formally self-adjoint, uniformly strongly elliptic differential operator of
order 2m, m ∈ N, with real valued coefficients aα ∈ C∞(Ω) which are
uniformly bounded and uniformly continuous for |α| ≤ 2m. We assume
that A is a positive self-adjoint operator in L2(Ω). Then A = A(x , D) is an
operator with discrete spectrum σ(A) of eigenvalues having no finite
accumulation point.
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Elliptic operators on quasibounded domains

Elliptic operators on quasi-bounded domains

Let A(x , D) =
∑

|α|≤2m

aα(x)∂α

be a formally self-adjoint, uniformly strongly elliptic differential operator of
order 2m, m ∈ N, with real valued coefficients aα ∈ C∞(Ω) which are
uniformly bounded and uniformly continuous for |α| ≤ 2m. We assume
that A is a positive self-adjoint operator in L2(Ω). Then A = A(x , D) is an
operator with discrete spectrum σ(A) of eigenvalues having no finite
accumulation point.

Theorem

Let Ω be quasi-bounded domain in R
n, such that b(Ω) < ∞ and (8) holds.

Let λ1, λ2, . . . be eigenvalues of A ordered by their magnitude and counted
according to their multiplicities. Then

λk ∼ k
2m
b(Ω) , k ∈ N .
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Elliptic operators on quasibounded domains

Elliptic operators on quasi-bounded domains-examples

Examples

Let α > 0 and α 6= 1. For the open set Ωα ⊂ R
2 we have the following

formula for the eigenvalues of the Dirichlet Laplacian

λk(−∆) ∼
{

k
2α

1+α if 0 < α < 1 ,

k
2

1+α if α > 1 .
(11)

L.Skrzypczak (UAM Poznań) Oppurg, October 2010 15 / 24



Elliptic operators on quasibounded domains

Elliptic operators on quasi-bounded domains-examples

Examples

Let α > 0 and α 6= 1. For the open set Ωα ⊂ R
2 we have the following

formula for the eigenvalues of the Dirichlet Laplacian

λk(−∆) ∼
{

k
2α

1+α if 0 < α < 1 ,

k
2

1+α if α > 1 .
(11)

The assumption (8) is sufficient but not necessary to get the estimates of
corresponding entropy numbers. For the domain Ωα with α = 1 one gets

ek

(

B̄s1
p1,q1

(Ω1) →֒ B̄s2
p2,q2

(Ω1)
)

∼ k−
s1−s2

2 (log k)
s1−s2

2
−( 1

p1
− 1

p2
)
,

and λk(−∆) ∼ k log k .

L.Skrzypczak (UAM Poznań) Oppurg, October 2010 15 / 24



Degenerated elliptic operators on R
n

Muckenhaupt weights and elliptic operators on R
n

We regards the following weights

w(α,β)(x) =

{

|x |α1(1 − log |x |)α2 , if |x | ≤ 1 ,

|x |β1(1 + log |x |)β2 , if |x | > 1 ,
(12)

α = (α1, α2), α1 > −n, α2 ∈ R, β = (β1, β2), β1 > −n, β2 ∈ R. (13)
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Degenerated elliptic operators on R
n

Muckenhaupt weights and elliptic operators on R
n

We regards the following weights

w(α,β)(x) =

{

|x |α1(1 − log |x |)α2 , if |x | ≤ 1 ,

|x |β1(1 + log |x |)β2 , if |x | > 1 ,
(12)

α = (α1, α2), α1 > −n, α2 ∈ R, β = (β1, β2), β1 > −n, β2 ∈ R. (13)

This covers weights of purely polynomial growth both near 0 and ∞,

wα,β(x) ∼
{

|x |α if |x | ≤ 1 ,

|x |β if |x | > 1 ,
with α > −n, β > −n. (14)
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Degenerated elliptic operators on R
n

Muckenhaupt weights and elliptic operators on R
n

We regards the following weights

w(α,β)(x) =

{

|x |α1(1 − log |x |)α2 , if |x | ≤ 1 ,

|x |β1(1 + log |x |)β2 , if |x | > 1 ,
(12)

α = (α1, α2), α1 > −n, α2 ∈ R, β = (β1, β2), β1 > −n, β2 ∈ R. (13)

This covers weights of purely polynomial growth both near 0 and ∞,

wα,β(x) ∼
{

|x |α if |x | ≤ 1 ,

|x |β if |x | > 1 ,
with α > −n, β > −n. (14)

Problem: Criteria for compactness and entropy numbers of embeddings of
type

id : Bs1
p1,q1

(Rn, w) →֒ Bs2
p2,q2

(Rn),

where s2 ≤ s1, 0 < p1, p2 < ∞, 0 < q1, q2 ≤ ∞,
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Degenerated elliptic operators on R
n

Embeddings with Muckenhaupt weights - motivations

To estimate the negative spectrum #{σp(Hγ)∩ (−∞, 0]} of operators
of type

Hγ = A − γV (x) as γ → ∞ ,

where A is an elliptic pseudodifferential operator of order κ > 0,
positive-definite and self-adjoint in L2(R

n) , e.g. A = (id −∆)κ/2,
and V (x) is a positive, real (singular) function.
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Degenerated elliptic operators on R
n

Embeddings with Muckenhaupt weights - motivations

To estimate the negative spectrum #{σp(Hγ)∩ (−∞, 0]} of operators
of type

Hγ = A − γV (x) as γ → ∞ ,

where A is an elliptic pseudodifferential operator of order κ > 0,
positive-definite and self-adjoint in L2(R

n) , e.g. A = (id −∆)κ/2,
and V (x) is a positive, real (singular) function.

The Birman-Schwinger principle. Let B =
√

VA−1
√

V be compact.

σe(Hγ) = σe(A) and #{σ(Hγ) ∩ (−∞, 0]} = #{σp(Hγ) ∩ (−∞, 0]}
= #{k ∈ N : µk(B) ≥ 1} < ∞ .
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Embeddings with Muckenhaupt weights - motivations

To estimate the negative spectrum #{σp(Hγ)∩ (−∞, 0]} of operators
of type

Hγ = A − γV (x) as γ → ∞ ,

where A is an elliptic pseudodifferential operator of order κ > 0,
positive-definite and self-adjoint in L2(R

n) , e.g. A = (id −∆)κ/2,
and V (x) is a positive, real (singular) function.

The Birman-Schwinger principle. Let B =
√

VA−1
√

V be compact.

σe(Hγ) = σe(A) and #{σ(Hγ) ∩ (−∞, 0]} = #{σp(Hγ) ∩ (−∞, 0]}
= #{k ∈ N : µk(B) ≥ 1} < ∞ .

By factorization we can reduce the estimates for B to the estimates
for the Sobolev embeddings of weighted spaces
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Degenerated elliptic operators on R
n

Negative spectrum - purely polynomial estimates for V .

Theorem

Let κ > 0, wα,βV ∈ L∞(Rn), and

−n < α < n, 0 < β < n, κ > α+ , κ 6= β. (15)

Then

#{σp(Hγ) ∩ (−∞, 0]} ≤ c
(

γ‖wα,βV |L∞‖2
)

n
min(κ,β) , γ → ∞. (16)
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Degenerated elliptic operators on R
n

Negative spectrum - purely polynomial estimates for V .

Theorem

Let κ > 0, wα,βV ∈ L∞(Rn), and

−n < α < n, 0 < β < n, κ > α+ , κ 6= β. (15)

Then

#{σp(Hγ) ∩ (−∞, 0]} ≤ c
(

γ‖wα,βV |L∞‖2
)

n
min(κ,β) , γ → ∞. (16)

Examples

Let Hγ = A − γ|x |−µ , 0 < µ < n, κ > µ, i.e. V (x) = |x |−µ.

Then #
{

σp(Hγ) ∩ (−∞, 0]
}

≤ C γ
n
µ , γ → ∞.
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Degenerated elliptic operators on R
n

Negative spectrum - purely polynomial estimates for V .

Theorem

Let κ > 0, wα,βV ∈ L∞(Rn), and

−n < α < n, 0 < β < n, κ > α+ , κ 6= β. (15)

Then

#{σp(Hγ) ∩ (−∞, 0]} ≤ c
(

γ‖wα,βV |L∞‖2
)

n
min(κ,β) , γ → ∞. (16)

Examples

Let Hγ = A − γ|x |−µ , 0 < µ < n, κ > µ, i.e. V (x) = |x |−µ.

Then #
{

σp(Hγ) ∩ (−∞, 0]
}

≤ C γ
n
µ , γ → ∞.

Limiting cases: κ = β > 0 or κ = α > 0?
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Degenerated elliptic operators on R
n

Negative spectrum - limiting cases

Theorem

Let 0 < κ < n and w(α,β)V ∈ L∞(Rn).
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Degenerated elliptic operators on R
n

Negative spectrum - limiting cases

Theorem

Let 0 < κ < n and w(α,β)V ∈ L∞(Rn).

(i) Let α1 = κ, α2 > 2κ

n
, 0 < β1 = β < n and β2 = 0. Then there exists

a positive constant C > 0 independent of γ, β and V such that

#
{

σp(Hγ) ∩ (−∞, 0]
}

≤ C











γ
n
κ if κ < β ,

γ
n
β if κ > β ,

γ
n
κ log γ if κ = β,

γ → ∞.

Examples
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Degenerated elliptic operators on R
n

Negative spectrum - limiting cases

Theorem

Let 0 < κ < n and w(α,β)V ∈ L∞(Rn).

(i) Let α1 = κ, α2 > 2κ

n
, 0 < β1 = β < n and β2 = 0. Then there exists

a positive constant C > 0 independent of γ, β and V such that

#
{

σp(Hγ) ∩ (−∞, 0]
}

≤ C











γ
n
κ if κ < β ,

γ
n
β if κ > β ,

γ
n
κ log γ if κ = β,

γ → ∞.

(ii) Assume max(0, α1) < κ and β1 = κ. Then there exists a positive
constant C > 0 independent of γ, β and V such that

#
{

σp(Hγ)∩(−∞, 0]
}

≤ C

{

γ
n
κ if κ

n
< β2,

γ
n
κ (log γ)1−β2

n
κ if 0 ≥ β2,

γ → ∞.

Examples
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Degenerated elliptic operators on R
n

Negative spectrum - limiting cases -examples

Examples

(i) Let 0 < κ < n, ε > 0, and

V (x) =

{

|x |−κ
(

1 − log |x |
)−2 κ

n
−ε

if |x | < 1,

|x |−κ
(

1 + log |x |
)−β

if |x | ≥ 1.
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Degenerated elliptic operators on R
n

Negative spectrum - limiting cases -examples

Examples

(i) Let 0 < κ < n, ε > 0, and

V (x) =

{

|x |−κ
(

1 − log |x |
)−2 κ

n
−ε

if |x | < 1,

|x |−κ
(

1 + log |x |
)−β

if |x | ≥ 1.

#
{

σp(Hγ) ∩ (−∞, 0]
}

≤ C

{

γ
n
κ , if β > κ

n
,

γ
n
κ (log γ)1+

n
κ

(−β)+ if β < κ

n
.

L.Skrzypczak (UAM Poznań) Oppurg, October 2010 20 / 24



Degenerated elliptic operators on R
n

Negative spectrum - limiting cases -examples

Examples

(i) Let 0 < κ < n, ε > 0, and

V (x) =

{

|x |−κ
(

1 − log |x |
)−2 κ

n
−ε

if |x | < 1,

|x |−κ
(

1 + log |x |
)−β

if |x | ≥ 1.

#
{

σp(Hγ) ∩ (−∞, 0]
}

≤ C

{

γ
n
κ , if β > κ

n
,

γ
n
κ (log γ)1+

n
κ

(−β)+ if β < κ

n
.

(ii) Let V (x) =

{

(

1 − log |x |
)α

if |x | < 1,
(

1 + log |x |
)−α

if |x | ≥ 1,
, α > 0 κ > 0.

Then #
{

σp(Hγ) ∩ (−∞, 0]
}

≤ C exp (γ
1
α ), γ → ∞.
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Weyl numbers of embeddings for logarithmic type weights

Logarithmic type weights

Let us regard the operator B = b2A
−1b1 with

b1w(0,β) ∈ Lr1(R
n) , b2w(0,η) ∈ Lr2(R

n) where β1 = η1 = 0 ,

1 ≤ r ′1 < p < r2 ≤ ∞, 1 < p < ∞, and κ > n

(

1

r1
+

1

r2

)

.

If β2 + η2 > 0 then the operator B is compact in Lp(R
n) and

|µk(B)| ≤ c‖b1w(0,β)|Lr1(R
n)‖ ‖b2w(0,η)|Lr2(R

n)‖× (17)
{

k−β2−η2 if β2 + η2 ≤ 1
r1

+ 1
r2

k
− 1

r1
− 1

r2 (1 + log k)
−β2−η2+

1
r1

+ 1
r2 if β2 + η2 > 1

r1
+ 1

r2
.
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Weyl numbers of embeddings for logarithmic type weights

Logarithmic type weights - entropy numbers

The last statement can be reduced by the Hölder inequality and the Carl
inequality to the estimates of entropy numbers of Sobolev embeddings

id : Bs1
p1,q1

(Rn, w(0,β)) →֒ Bs2
p2,q2

(Rn), with β1 = 0 and

1

p1
=

1

p
+

1

r1
,

1

p
=

1

p2
+

1

r2
.
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Weyl numbers of embeddings for logarithmic type weights

Logarithmic type weights - entropy numbers

The last statement can be reduced by the Hölder inequality and the Carl
inequality to the estimates of entropy numbers of Sobolev embeddings

id : Bs1
p1,q1

(Rn, w(0,β)) →֒ Bs2
p2,q2

(Rn), with β1 = 0 and

1

p1
=

1

p
+

1

r1
,

1

p
=

1

p2
+

1

r2
.

In case of δ = s1 − 1
p1

− s2 + 1
p2

> 0, β2 > 0, then for all k ∈ N,

ek (id ) ∼







k
−

β2
p1 , if β2

p1
≤ 1

p1
− 1

p2
,

k
− 1

p1
+ 1

p2 (1 + log k)
−

β2
p1

+ 1
p1

− 1
p2 , if β2

p1
> 1

p1
− 1

p2
.
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Weyl numbers of embeddings for logarithmic type weights

Logarithmic type weights - entropy numbers

The last statement can be reduced by the Hölder inequality and the Carl
inequality to the estimates of entropy numbers of Sobolev embeddings

id : Bs1
p1,q1

(Rn, w(0,β)) →֒ Bs2
p2,q2

(Rn), with β1 = 0 and

1

p1
=

1

p
+

1

r1
,

1

p
=

1

p2
+

1

r2
.

In case of δ = s1 − 1
p1

− s2 + 1
p2

> 0, β2 > 0, then for all k ∈ N,

ek (id ) ∼







k
−

β2
p1 , if β2

p1
≤ 1

p1
− 1

p2
,

k
− 1

p1
+ 1

p2 (1 + log k)
−

β2
p1

+ 1
p1

− 1
p2 , if β2

p1
> 1

p1
− 1

p2
.

Alternative strategy: xk(id ) ∼ ? plus the Pietsch inequality.
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Weyl numbers of embeddings for logarithmic type weights

Logarithmic type weights - Weyl numbers

Theorem

Let 0 < p1 ≤ p2 ≤ ∞, 1 < q1, q2 ≤ ∞ and s1 − s2 − d( 1
p1

− 1
p2

) > 0.
Then

xk(id ) ∼ (1 + log k)
−

β2
p1















k
−( 1

p1
− 1

p2
)

if 1 ≤ p1 ≤ p2 ≤ 2,

k
−( 1

p1
− 1

2
)

if 1 ≤ p1 < 2 < p2 ≤ ∞,

1 if 2 ≤ p1 ≤ p2 ≤ ∞.
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Weyl numbers of embeddings for logarithmic type weights

Logarithmic type weights - Weyl numbers

Theorem

Let 0 < p1 ≤ p2 ≤ ∞, 1 < q1, q2 ≤ ∞ and s1 − s2 − d( 1
p1

− 1
p2

) > 0.
Then

xk(id ) ∼ (1 + log k)
−

β2
p1















k
−( 1

p1
− 1

p2
)

if 1 ≤ p1 ≤ p2 ≤ 2,

k
−( 1

p1
− 1

2
)

if 1 ≤ p1 < 2 < p2 ≤ ∞,

1 if 2 ≤ p1 ≤ p2 ≤ ∞.

Remark

One can show also that

ak(id ) ∼ ck(id ) ∼ dk(id ) ∼ (1 + log k)
−

β2
p1 .
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Weyl numbers of embeddings for logarithmic type weights

Logarithmic type weights

Let us regard once more the operator B = b2A
−1b1 with

b1w(0,β) ∈ Lr1(R
n) , b2w(0,η) ∈ Lr2(R

n) where β1 = η1 = 0 ,

1 ≤ r ′1 < p < r2 ≤ ∞, 1 < p < ∞, and κ > n

(

1

r1
+

1

r2

)

.

If β2 + η2 > 0 then the operator B is compact in Lp(R
n) and

|µk(B)| ≤ c‖b1w(0,β)|Lr1(R
n)‖ ‖b2w(0,η)|Lr2(R

n)‖× (18)














(1 + log k)−β2−η2k
− 1

r1
− 1

r2 if 1
2 + 1

r2
≤ 1

p
,

(1 + log k)−β2−η2k
− 1

p
− 1

r1
+ 1

2 if 1
2 − 1

r1
< 1

p
< 1

2 + 1
r2

and β2 + η2 ≤ 1
p

+ 1
r1
− 1

2 ,
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