Lusin’s theorem and compactness criteria in spaces of measurable functions

V.G.Krotov
Belorussian State University, krotov@bsu.by

October 15, 2010
The set $S \subset X$ in complete metric space X is

— *compact* if any open cover of S contains the finite subcover,

— *completely bounded* if for any $\varepsilon > 0$ there exists finite ε-net of S.

Compact set is bounded and closed.

The following statements are equivalent

1) S is compact,

2) S is closed and completely bounded (Hausdorff criterion),

3) S is closed and any infinite subset have a limit point (Bolzano–Weierstrass property).

We will use the terms of completely boundedness.
The set $S \subset X$ in complete metric space X is
— *compact* if any open cover of S contains the finite subcover,
— *completely bounded* if for any $\varepsilon > 0$ there exists finite ε-net of S.

Compact set is bounded and closed.

The following statements are equivalent
1) S is compact,
2) S is closed and completely bounded (Hausdorff criterion),
3) S is closed and any infinite subset have a limit point
 (Bolzano–Weierstrass property).

We will use the terms of completely boundedness.
Compactness in $C(X)$

Theorem (C. Arzela–G. Ascoli criterion)

Let X be compact metric space. The set $S \subset C(X)$ is completely bounded if and only if

$$\exists M > 0 \quad \forall f \in S, \ x \in X \quad |f(x)| \leq M$$

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall f \in S$$

$$\forall x_1, x_2 \in X \quad d(x_1, x_2) < \delta \quad |f(x_1) - f(x_2)| < \varepsilon$$

Ascoli (1883) proved the sufficiency, Arzela (1889) proved the necessity of this condition.

The extension to a case of metric space was done by M. Fréchet (1906).
Compactness in $C(X)$

Theorem (C.Arzela–G.Ascoli criterion)

Let X be compact metric space. The set $S \subset C(X)$ is completely bounded if and only if

$$\exists \ M > 0 \quad \forall \ f \in S, \ x \in X \quad |f(x)| \leq M$$

$$\forall \ \varepsilon > 0 \quad \exists \ \delta > 0 \quad \forall \ f \in S$$

$$\forall \ x_1, x_2 \in X \quad d(x_1, x_2) < \delta \quad |f(x_1) - f(x_2)| < \varepsilon$$

Ascoli (1883) proved the sufficiency,
Arzela (1889) proved the necessity of this condition.
The extension to a case of metric space was done by M.Fréchet (1906).
Compactness in $C(X)$

Theorem (C.Arzela–G.Ascoli criterion)

Let X be compact metric space. The set $S \subset C(X)$ is completely bounded if and only if

$$\exists M > 0 \quad \forall f \in S, \ x \in X \quad |f(x)| \leq M$$

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall f \in S$$

$$\forall x_1, x_2 \in X \ d(x_1, x_2) < \delta \quad |f(x_1) - f(x_2)| < \varepsilon$$

Ascoli (1883) proved the sufficiency, Arzela (1889) proved the necessity of this condition.

The extension to a case of metric space was done by M.Fréchet (1906).
Compactness in $C(X)$

Theorem (C.Arzela–G.Ascoli criterion)

Let X be compact metric space. The set $S \subset C(X)$ is completely bounded if and only if

$$\exists M > 0 \quad \forall f \in S, \ x \in X \quad |f(x)| \leq M$$

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall f \in S$$

$$\forall x_1, x_2 \in X \quad d(x_1, x_2) < \delta \quad |f(x_1) - f(x_2)| < \varepsilon$$

Ascoli (1883) proved the sufficiency,
Arzela (1889) proved the necessity of this condition.
The extension to a case of metric space was done by M.Fréchet (1906).
Notations

Let \((X, d, \mu)\) be bounded metric space (\(\text{diam } X = 1\)) with metric \(d\) and regular Borel measure \(\mu\),

\[
B = B(x, r) = \{y \in X : d(x, y) < r\},
\]

\(r_B\) is the radius of \(B\),

\[
f_B = \int_B f \, d\mu = \frac{1}{\mu(B)} \int_B f \, d\mu
\]

Doubling condition

\[
\mu(B(x, 2r)) \leq c_\mu \mu(B(x, r)), \quad x \in X, \quad r > 0.
\] (1)

\[
\|f\|_{L^p} = \|f\|_p = \left(\int_X |f|^p \, d\mu \right)^{1/p}, \quad p > 0.
\]
Notations

Let (X, d, μ) be bounded metric space $(\text{diam } X = 1)$ with metric d and regular Borel measure μ,

$$B = B(x, r) = \{y \in X : d(x, y) < r\},$$

r_B is the radius of B,

$$f_B = \int_B f \, d\mu = \frac{1}{\mu B} \int_B f \, d\mu$$

Doubling condition

$$\mu B(x, 2r) \leq c_\mu \mu B(x, r), \quad x \in X, \quad r > 0. \quad (1)$$

$$\|f\|_{L^p} = \|f\|_p = \left(\int_X |f|^p \, d\mu\right)^{1/p}, \quad p > 0.$$
Notations

Let (X, d, μ) be bounded metric space $(\text{diam } X = 1)$ with metric d and regular Borel measure μ,

$$B = B(x, r) = \{y \in X : d(x, y) < r\},$$

r_B is the radius of B,

$$f_B = \int_B f \, d\mu = \frac{1}{\mu B} \int_B f \, d\mu$$

Doubling condition

$$\mu B(x, 2r) \leq c_{\mu} \mu B(x, r), \quad x \in X, \quad r > 0. \quad (1)$$

$$\|f\|_{L^p} = \|f\|_p = \left(\int_X |f|^p \, d\mu\right)^{1/p}, \quad p > 0.$$
Notations

Let \((X, d, \mu)\) be bounded metric space \((\text{diam } X = 1)\) with metric \(d\) and regular Borel measure \(\mu\),

\[
B = B(x, r) = \{y \in X : d(x, y) < r\},
\]

\(r_B\) is the radius of \(B\),

\[
f_B = \int_B f \, d\mu = \frac{1}{\mu B} \int_B f \, d\mu
\]

Doubling condition

\[
\mu B(x, 2r) \leq c_\mu \mu B(x, r), \quad x \in X, \quad r > 0. \tag{1}
\]

\[
\|f\|_{L^p} = \|f\|_p = \left(\int_X |f|^p \, d\mu\right)^{1/p}, \quad p > 0.
\]
Let $X \subset \mathbb{R}^n$ be bounded and measurable. All functions are zero outside of X.

Theorem (M. Riesz criterion)

$S \subset L^p(X)$, $p > 0$, is completely bounded if and only if S is bounded and

\[
\lim_{|h| \to 0} \sup_{f \in S} \int_X |f(x + h) - f(x)|^p \, dx = 0.
\]

M. Riesz (1933) $p \geq 1$, M. Tsuji (1951) $0 < p < 1$.
Let $X \subset \mathbb{R}^n$ be bounded and measurable. All functions are zero outside of X.

Theorem (M.Riesz criterion)

$S \subset L^p(X), \, p > 0,$ is completely bounded if and only if S is bounded and

$$\lim_{|h| \to +0} \sup_{f \in S} \int_X |f(x + h) - f(x)|^p \, dx = 0.$$

M.Riesz (1933) $p \geq 1$, M.Tsuji (1951) $0 < p < 1$.
M. Riesz criterion

Let \(X \subset \mathbb{R}^n \) be bounded and measurable. All functions are zero outside of \(X \).

Theorem (M. Riesz criterion)

\[S \subset L^p(X), \ p > 0, \text{ is completely bounded if and only if } S \text{ is bounded and} \]

\[
\lim_{|h| \to 0} \sup_{f \in S} \int_X |f(x + h) - f(x)|^p \, dx = 0.
\]

M. Riesz (1933) \(p \geq 1 \), M. Tsuji (1951) \(0 < p < 1 \).
Let $X \subset \mathbb{R}^n$ be bounded and measurable. All functions are zero outside of X.

Theorem (M.Riesz criterion)

$S \subset L^p(X), \ p > 0$, is completely bounded if and only if S is bounded and

$$
\lim_{|h| \to +0} \sup_{f \in S} \int_X |f(x + h) - f(x)|^p \, dx = 0.
$$

M.Riesz (1933) $p \geq 1$, M.Tsuji (1951) $0 < p < 1$.

M.Riesz theorem and compactness

Maximal functions and compactness

The space of measurable functions

Final remarks
A.N. Kolmogorov criterion

Let $X \subset \mathbb{R}^n$ be bounded and measurable. All functions are zero outside of X.

Theorem (A.N. Kolmogorov criterion)

$S \subset L^p(X)$, $p \geq 1$, is completely bounded if and only if S is bounded and

$$\lim_{r \to +0} \sup_{f \in S} \int_{X} \left| f(x) - \int_{B(x,r)} f d\mu \right|^p d\mu(x) = 0.$$

A.N. Kolmogorov (1931),
A. Kałamajska (1999), $\forall r > 0 \inf_{x \in X} \mu B(x, r) > 0$ (only sufficiency).
Let $X \subset \mathbb{R}^n$ be bounded and measurable. All functions are zero outside of X.

Theorem (A.N.Kolmogorov criterion)

$S \subset L^p(X), \ p \geq 1$, is completely bounded if and only if S is bounded and

$$
\lim_{r \to +0} \sup_{f \in S} \int_X \left| f(x) - \int_{B(x,r)} f \, d\mu \right|^p \, d\mu(x) = 0.
$$

A.N.Kolmogorov (1931),
A.Kałamajska (1999), $\forall \ r > 0 \ \inf_{x \in X} \mu B(x, r) > 0$ (only sufficiency).
A.N.Kolmogorov criterion

Let $X \subset \mathbb{R}^n$ be bounded and measurable. All functions are zero outside of X.

Theorem (A.N.Kolmogorov criterion)

$S \subset L^p(X), p \geq 1$, is completely bounded if and only if S is bounded and

$$
\lim_{r \to 0^+} \sup_{f \in S} \int_X \left| f(x) - \int_{B(x,r)} f \, d\mu \right|^p \, d\mu(x) = 0.
$$

A.N.Kolmogorov (1931),
A.Kałamajska (1999), $\forall r > 0 \inf_{x \in X} \mu B(x, r) > 0$ (only sufficiency).
A.N. Kolmogorov criterion

Let $X \subset \mathbb{R}^n$ be bounded and measurable. All functions are zero outside of X.

Theorem (A.N. Kolmogorov criterion)

$S \subset L^p(X), \ p \geq 1$, is completely bounded if and only if S is bounded and

$$
\lim_{r \to +0} \sup_{f \in S} \left\{ \int_X \left| f(x) - \int_{B(x,r)} f \, d\mu \right|^p \, d\mu(x) \right\} = 0.
$$

A.N. Kolmogorov (1931),

A. Kałamajska (1999), $\forall r > 0 \inf_{x \in X} \mu B(x, r) > 0$ (only sufficiency).
Let $X \subset \mathbb{R}^n$ be bounded and measurable. All functions are zero outside of X.

Theorem (A.N.Kolmogorov criterion)

$S \subset L^p(X), \ p \geq 1$, is completely bounded if and only if S is bounded and

$$\lim_{r \to +0} \sup_{f \in S} \left(\int_X \left| f(x) - \int_{B(x,r)} f \, d\mu \right|^p \, d\mu(x) \right) = 0.$$

A.N.Kolmogorov (1931),
A.Kałamajska (1999), $\forall \ r > 0 \ \inf_{x \in X} \mu B(x, r) > 0$ (only sufficiency).
Local smoothness inequality

Ω be the class of functions \(\eta : (0, 1] \to \mathbb{R}_+, \eta(+0) = 0, \)

\[\eta(r) \uparrow, \quad \exists a > 0 \quad \eta(r)r^{-a} \downarrow. \]

Such function we call ”smoothness function”.

If \(f \) is measurable function on \(X \), then denote by \(D_\eta(f) \) the set of all measurable functions \(g \geq 0 \) such that

\[\exists E \subset X \quad \mu E = 0 \]

\[|f(x) - f(y)| \leq [g(x) + g(y)]\eta(d(x,y)), \quad x, y \in X \setminus E. \quad (2) \]

(2) is called local smoothness inequality.
Local smoothness inequality

Ω be the class of functions $\eta : (0, 1] \to \mathbb{R}_+, \eta(+0) = 0,$

$$\eta(r) \uparrow, \quad \exists \alpha > 0 \quad \eta(r)r^{-\alpha} \downarrow .$$

Such function we call ”smoothness function”.

If f is measurable function on X, then denote by $D_\eta(f)$ the set of all measurable functions $g \geq 0$ such that

$$\exists E \subset X \quad \mu E = 0$$

$$\left| f(x) - f(y) \right| \leq [g(x) + g(y)]\eta(d(x,y)), \quad x, y \in X \setminus E. \quad (2)$$

(2) is called local smoothness inequality.
Local smoothness inequality

Ω be the class of functions $\eta : (0, 1] \rightarrow \mathbb{R}_+, \eta(+0) = 0,$

$$\eta(r) \uparrow, \quad \exists a > 0 \quad \eta(r)r^{-a} \downarrow.$$

Such function we call "smoothness function". If f is measurable function on X, then denote by $D_\eta(f)$ the set of all measurable functions $g \geq 0$ such that

$$\exists E \subset X \quad \mu E = 0$$

$$|f(x) - f(y)| \leq [g(x) + g(y)]\eta(d(x,y)), \quad x, y \in X \setminus E. \quad (2)$$

(2) is called local smoothness inequality.
Quantitative form of Luzin theorem

The following statement is the quantitative form of Luzin theorem: for any measurable function f there exist $\eta \in \Omega$ such that $D_\eta(f) \neq \emptyset$.

Denote by

$$E_\lambda = \{x \in X \setminus E : g(x) \leq \lambda\},$$

then $\mu E_\lambda \to \mu X$ ($\lambda \to \infty$) and it follows from (2)

$$|f(x) - f(y)| \leq 2\lambda \eta(d(x,y)), \quad x, y \in E_\lambda.$$

Function f is uniformly continuous on E_λ and $2\lambda \eta(\delta)$ is the upper estimate for modulus of continuity of f on this set.
The following statement is the quantitative form of Luzin theorem: for any measurable function f there exist $\eta \in \Omega$ such that $D_\eta(f) \neq \emptyset$. Denote by

$$E_\lambda = \{ x \in X \setminus E : g(x) \leq \lambda \},$$

then $\mu E_\lambda \to \mu X$ ($\lambda \to \infty$) and it follows from (2)

$$|f(x) - f(y)| \leq 2\lambda \eta(d(x, y)), \quad x, y \in E_\lambda.$$

Function f is uniformly continuous on E_λ and $2\lambda \eta(\delta)$ is the upper estimate for modulus of continuity of f on this set.
Quantitative form of Luzin theorem

The following statement is the quantitative form of Luzin theorem: for any measurable function \(f \) there exist \(\eta \in \Omega \) such that \(D_\eta(f) \neq \emptyset \).

Denote by
\[
E_\lambda = \{ x \in X \setminus E : g(x) \leq \lambda \},
\]
then \(\mu E_\lambda \to \mu X \ (\lambda \to \infty) \) and it follows from (2)
\[
|f(x) - f(y)| \leq 2\lambda \eta(d(x,y)), \quad x, y \in E_\lambda.
\]

Function \(f \) is uniformly continuous on \(E_\lambda \) and \(2\lambda \eta(\delta) \) is the upper estimate for modulus of continuity of \(f \) on this set.
New criteria in terms of Luzin theorem

Theorem

The set $S \subset L^p(X)$, $p > 0$, is completely bounded if and only if S is bounded and

$$\exists \eta \in \Omega \quad \sup_{f \in S} \inf_{g \in D_\eta(f)} \|g\|_{L^p(X)} < +\infty$$

If we replace here L^p by C, then we obtain perfectly Arzela–Ascoli criterion for $C(X)$!
New criteria in terms of Luzin theorem

Theorem

The set \(S \subset L^p(X), \, p > 0, \) is completely bounded if and only if \(S \) is bounded and

\[
\exists \eta \in \Omega \sup_{f \in S} \inf_{g \in D_\eta(f)} \|g\|_{L^p(X)} < +\infty
\]

If we replace here \(L^p \) by \(C \), then we obtain perfectly Arzela–Ascoli criterion for \(C(X) \)!
The set $S \subset L^p(X)$, $p > 0$, is completely bounded if and only if S is bounded and

$$\exists \eta \in \Omega \sup_{f \in S} \inf_{g \in D_\eta(f)} \|g\|_{L^p(X)} < +\infty$$

If we replace here L^p by C, then we obtain perfectly Arzela–Ascoli criterion for $C(X)$!
Maximal operators

For $q > 0$ and $\eta \in \Omega$ denote by

$$\mathcal{N}_q^\eta f(x) = \sup_{B \ni x} \frac{1}{\eta(rB)} \left(\int_B |f(x) - f(y)|^q d\mu(y) \right)^{1/q}.$$

$X = \mathbb{R}^n$, $\eta(t) = t^\alpha$ A.Cálderon (1972), A.Cálderon–R.Scott (1978),
$X = [0, 1]$, $\eta(t)t^{-1}$ K.I.Oskolkov (1977), in implicit form
$X = [0, 1]^n$, $\eta(t)t^{-1}$ V.I.Kolyada (1987),

$$|f(x) - f(y)| \leq c_q [\mathcal{N}_q^\eta f(x) + \mathcal{N}_q^\eta f(x)] \eta(d(x, y)).$$
Maximal operators

For $q > 0$ and $\eta \in \Omega$ denote by

$\mathcal{N}_q^\eta f(x) = \sup_{B \ni x} \frac{1}{\eta(rB)} \left(\int_B |f(x) - f(y)|^q d\mu(y) \right)^{1/q}.$

$X = \mathbb{R}^n$, $\eta(t) = t^\alpha$ A.Cálderon (1972), A.Cálderon–R.Scott (1978),
$X = [0, 1]$, $\eta(t)t^{-1}$ K.I.Oskolkov (1977), in implicit form
$X = [0, 1]^n$, $\eta(t)t^{-1}$ V.I.Kolyada (1987),

$|f(x) - f(y)| \leq c_q [\mathcal{N}_q^\eta f(x) + \mathcal{N}_q^\eta f(x)] \eta(d(x, y)).$
Maximal operators

For \(q > 0 \) and \(\eta \in \Omega \) denote by

\[
\mathcal{N}^q_{\eta} f(x) = \sup_{B \ni x} \frac{1}{\eta(rB)} \left(\int_B |f(x) - f(y)|^q d\mu(y) \right)^{1/q}.
\]

\(X = \mathbb{R}^n, \eta(t) = t^\alpha \) A.Cálderon (1972), A.Cálderon–R.Scott (1978),
\(X = [0, 1], \eta(t)t^{-1} \downarrow \) K.I.Oskolkov (1977), in implicit form
\(X = [0, 1]^n, \eta(t)t^{-1} \downarrow \) V.I.Kolyada (1987),

\[
|f(x) - f(y)| \leq c_q [\mathcal{N}^q_{\eta} f(x) + \mathcal{N}^q_{\eta} f(x)] \eta(d(x, y)).
\]
Maximal operators

For $q > 0$ and $\eta \in \Omega$ denote by

$$N^q_\eta f(x) = \sup_{B \ni x} \frac{1}{\eta(rB)} \left(\int_B |f(x) - f(y)|^q d\mu(y) \right)^{1/q}.$$

$X = \mathbb{R}^n$, $\eta(t) = t^\alpha$ A.Cálderon (1972), A.Cálderon–R.Scott (1978), $X = [0, 1]$, $\eta(t) t^{-1}$ K.I.Oskolkov (1977), in implicit form $X = [0, 1]^n$, $\eta(t) t^{-1}$ V.I.Kolyada (1987), in general case I.A.Ivanishko (2004).

$$|f(x) - f(y)| \leq c_q [N^q_\eta f(x) + N^q_\eta f(x)] \eta(d(x, y)).$$
Maximal operators

For $q > 0$ and $\eta \in \Omega$ denote by

$$N_q^\eta f(x) = \sup_{B \ni x} \frac{1}{\eta(rB)} \left(\int_B |f(x) - f(y)|^q d\mu(y) \right)^{1/q}.$$

$X = \mathbb{R}^n$, $\eta(t) = t^\alpha$ A.Cálderon (1972), A.Cálderon–R.Scott (1978), $X = [0, 1]$, $\eta(t)t^{-1}$ K.I.Oskolkov (1977), in implicit form $X = [0, 1]^n$, $\eta(t)t^{-1}$ V.I.Kolyada (1987), in general case I.A.Ivanishko (2004).

$$|f(x) - f(y)| \leq c_q [N_q^\eta f(x) + N_q^\eta f(x)] \eta(d(x, y)).$$
Maximal operators

For \(q > 0 \) and \(\eta \in \Omega \) denote by

\[
\mathcal{N}_\eta^q f(x) = \sup_{B \ni x} \frac{1}{\eta(rB)} \left(\int_B |f(x) - f(y)|^q \, d\mu(y) \right)^{1/q}.
\]

\(X = \mathbb{R}^n, \eta(t) = t^\alpha \) A.Cálderon (1972), A.Cálderon–R.Scott (1978),
\(X = [0, 1], \eta(t)t^{-1} \downarrow \) K.I.Oskolkov (1977), in implicit form
\(X = [0, 1]^n, \eta(t)t^{-1} \downarrow \) V.I.Kolyada (1987),

\[
|f(x) - f(y)| \leq c_q \left[\mathcal{N}_\eta^q f(x) + \mathcal{N}_\eta^q f(x) \right] \eta(d(x, y)).
\]
Criterion in terms of maximal operators

Theorem

Let $0 < q < p$. The set $S \subset L^p(X)$, $p > 0$, is completely bounded if and only if S is bounded and

$$\exists \eta \in \Omega \sup_{f \in S} \left\| N^q \eta f \right\|_{L^p(X)} < +\infty,$$

and if and only if S is bounded and

$$\lim_{r \to +0} \sup_{f \in S} \int_X \left[\int_{B(x,r)} |f(x) - f(y)|^q \, d\mu(y) \right]^{p/q} \, d\mu(x) = 0.$$

It is not true for $q = p$.
Criterion in terms of maximal operators

Theorem

Let $0 < q < p$. The set $S \subset L^p(X)$, $p > 0$, is completely bounded if and only if S is bounded and

$$\exists \eta \in \Omega \sup_{f \in S} \left\| \mathcal{N}_\eta f \right\|_{L^p(X)} < +\infty,$$

and if and only if S is bounded and

$$\lim_{r \to +0} \sup_{f \in S} \int_X \left[\int_{B(x,r)} |f(x) - f(y)|^q \, d\mu(y) \right]^{p/q} \, d\mu(x) = 0.$$

It is not true for $q = p$.

V.G.Krotov
Oppurg, October 10-16, 2010
Criterion in terms of maximal operators

Theorem

Let $0 < q < p$. The set $S \subset L^p(X)$, $p > 0$, is completely bounded if and only if S is bounded and

$$\exists \eta \in \Omega \sup_{f \in S} \left\| \mathcal{N}_\eta f \right\|_{L^p(X)} < +\infty,$$

and if and only if S is bounded and

$$\lim_{r \to +0} \sup_{f \in S} \int_X \left[\int_{B(x,r)} |f(x) - f(y)|^q \, d\mu(y) \right]^{p/q} \, d\mu(x) = 0.$$

It is not true for $q = p$.
Criterion in terms of maximal operators

Theorem

Let \(0 < q < p\). The set \(S \subset L^p(X), p > 0\), is completely bounded if and only if \(S\) is bounded and

\[
\exists \eta \in \Omega \quad \sup_{f \in S} \left\| N^q \eta f \right\|_{L^p(X)} < +\infty,
\]

and if and only if \(S\) is bounded and

\[
\lim_{r \to +0} \sup_{f \in S} \int_X \left[\int_{B(x,r)} |f(x) - f(y)|^q \, d\mu(y) \right]^{p/q} \, d\mu(x) = 0.
\]

It is not true for \(q = p\).
Case of unbounded X

Kolmogorov criterion is false if the set $X \subset \mathbb{R}^n$ is unbounded. J. Tamarkin (1932) shows that here we need extra condition for compactness

$$\lim_{R \to +\infty} \sup_{f \in S} \int_{|x| > R} |f|^p \, d\mu = 0.$$

A. Tulajkov (1933) proved this results of Kolmogorov–Tamarkin for $p = 1$. Similarly in all above criteria for $L^p(X)$ we need additional condition

$$\lim_{R \to +\infty} \sup_{f \in S} \int_{X \setminus B(x_0, R)} |f|^p \, d\mu = 0,$$

for some $x_0 \in X$.
Case of unbounded X

Kolmogorov criterion is false if the set $X \subset \mathbb{R}^n$ is unbounded. J. Tamarkin (1932) shows that here we need extra condition for compactness

$$\lim_{R \to +\infty} \sup_{f \in S} \int_{|x| > R} |f|^p \, d\mu = 0.$$

A. Tulajkov (1933) proved this results of Kolmogorov–Tamarkin for $p = 1$. Similarly in all above criteria for $L^p(X)$ we need additional condition

$$\lim_{R \to +\infty} \sup_{f \in S} \int_{X \setminus B(x_0, R)} |f|^p \, d\mu = 0,$$

for some $x_0 \in X$.
Case of unbounded X

Kolmogorov criterion is false if the set $X \subset \mathbb{R}^n$ is unbounded. J. Tamarkin (1932) shows that here we need extra condition for compactness

$$\lim_{R \to +\infty} \sup_{f \in S} \int_{|x| > R} |f|^p \, d\mu = 0.$$

A. Tulajkov (1933) proved this results of Kolmogorov–Tamarkin for $p = 1$. Similarly in all above criteria for $L^p(X)$ we need additional condition

$$\lim_{R \to +\infty} \sup_{f \in S} \int_{X \setminus B(x_0,R)} |f|^p \, d\mu = 0,$$

for some $x_0 \in X$.

V.G.Krotov Oppurg, October 10-16, 2010
Case of unbounded X

Kolmogorov criterion is false if the set $X \subset \mathbb{R}^n$ is unbounded. J.Tamarkin (1932) shows that here we need extra condition for compactness

$$
\lim_{R \to +\infty} \sup_{f \in S} \int_{|x| > R} |f|^p \, d\mu = 0.
$$

A.Tulajkov (1933) proved this results of Kolmogorov–Tamarkin for $p = 1$. Similarly in all above criteria for $L^p(X)$ we need additional condition

$$
\lim_{R \to +\infty} \sup_{f \in S} \int_{X \setminus B(x_0, R)} |f|^p \, d\mu = 0,
$$

for some $x_0 \in X$.
The space L^0

$L^0(X)$ be the set of all (equivalence classes) measurable functions $f : X \to \mathbb{R}$.

$L^0(X)$ is complete with respect to the metric

$$d_{L^0}(f, g) = \int_X \frac{|f - g|}{1 + |f - g|} d\mu.$$

Convergence in $L^0(X)$ coincide with convergence on measure

$$\forall \varepsilon > 0 \lim_{n \to \infty} \mu \{|f - f_n| > \varepsilon\} = 0.$$

Convergence on measure was introduced by F.Riesz (1909).

The space $L^0(X)$ was defined by M.Fréchet (1919).
The space L^0

$L^0(X)$ be the set of all (equivalence classes) measurable functions $f : X \to \mathbb{R}$. $L^0(X)$ is complete with respect to the metric

$$d_{L^0}(f, g) = \int_X \frac{|f - g|}{1 + |f - g|} d\mu.$$

Convergence in $L^0(X)$ coincide with convergence on measure

$$\forall \varepsilon > 0 \lim_{n \to \infty} \mu \{|f - f_n| > \varepsilon\} = 0.$$

Convergence on measure was introduced by F. Riesz (1909). The space $L^0(X)$ was defined by M. Fréchet (1919).
The space L^0

$L^0(X)$ be the set of all (equivalence classes) measurable functions $f : X \to \mathbb{R}$.
$L^0(X)$ is complete with respect to the metric

$$d_{L^0}(f, g) = \int_X \frac{|f - g|}{1 + |f - g|} d\mu.$$

Convergence in $L^0(X)$ coincide with convergence on measure

$$\forall \varepsilon > 0 \lim_{n \to \infty} \mu \{|f - f_n| > \varepsilon\} = 0.$$

Convergence on measure was introduced by F. Riesz (1909).
The space $L^0(X)$ was defined by M. Fréchet (1919).
The space L^0

$L^0(X)$ be the set of all (equivalence classes) measurable functions $f : X \to \mathbb{R}$.
$L^0(X)$ is complete with respect to the metric

$$d_{L^0}(f, g) = \int_X \frac{|f - g|}{1 + |f - g|} d\mu.$$

Convergence in $L^0(X)$ coincide with convergence on measure

$$\forall \varepsilon > 0 \lim_{n \to \infty} \mu \{|f - f_n| > \varepsilon\} = 0.$$

Convergence on measure was introduced by F. Riesz (1909).
The space $L^0(X)$ was defined by M. Fréchet (1919).
The space L^0

$L^0(X)$ be the set of all (equivalence classes) measurable functions $f : X \to \mathbb{R}$.
$L^0(X)$ is complete with respect to the metric

$$d_{L^0}(f, g) = \int_X \frac{|f - g|}{1 + |f - g|} d\mu.$$

Convergence in $L^0(X)$ coincide with convergence on measure

$$\forall \varepsilon > 0 \lim_{n \to \infty} \mu \{|f - f_n| > \varepsilon\} = 0.$$

Convergence on measure was introduced by F.Riesz (1909).
The space $L^0(X)$ was defined by M.Fréchet (1919).
A. Lebesgue–G. Vitali criterion

Let X be any set with finite measure.

Theorem (A. Lebesgue–G. Vitali)

The set $S \subset L^p(X)$, $p > 0$, is completely bounded if and only if S is completely bounded in $L^0(X)$ and

$$
\lim_{\mu E \to 0} \sup_{f \in S} \int_E |f|^p \, d\mu = 0
$$

(property of equiabsolutely continuity).
Let X be any set with finite measure.

Theorem (A. Lebesgue–G. Vitali)

The set $S \subset L^p(X)$, $p > 0$, is completely bounded if and only if S is completely bounded in $L^0(X)$ and

$$\lim_{\mu E \to 0} \sup_{f \in S} \int_E |f|^p d\mu = 0$$

(property of equiabsolutely continuity).
The space \(L^0 \)

Fréchet criterion

Theorem (M.Fréchet)

\(S \subseteq L^0(X) \) is completely bounded if and only if it is almost uniformly bounded and almost equicontinuous, that is

\[
\forall \varepsilon > 0 \quad \exists \delta > 0, \lambda > 0 \quad \forall f \in S \quad \exists E(f) \subseteq X
\]

\(a) \mu E(f) < \varepsilon, \)

\(b) |f(x) - f(y)| < \varepsilon \text{ for } x, y \in X \setminus E(f), d(x, y) < \delta, \)

\(c) |f(x)| \leq \lambda \text{ for } x \in X \setminus E(f). \)

M.Fréchet (1927), E.Hanson (1933) give simple proof.
Fréchet criterion

Theorem (M.Fréchet)

\(S \subset L^0(X) \) is completely bounded if and only if it is almost uniformly bounded and almost equicontinuous, that is

\[
\forall \varepsilon > 0 \quad \exists \delta > 0, \lambda > 0 \quad \forall f \in S \quad \exists E(f) \subset X
\]

a) \(\mu E(f) < \varepsilon \),

b) \(|f(x) - f(y)| < \varepsilon \) for \(x, y \in X \setminus E(f) \), \(d(x, y) < \delta \),

c) \(|f(x)| \leq \lambda \) for \(x \in X \setminus E(f) \).

M.Fréchet (1927), E.Hanson (1933) give simple proof.
Fréchet criterion

\textbf{Theorem (M.Fréchet)}

\(S \subset L^0(X)\) is completely bounded if and only if it is almost uniformly bounded and almost equicontinuous, that is

\[\forall \varepsilon > 0 \; \exists \delta > 0, \; \lambda > 0 \; \forall f \in S \; \exists E(f) \subset X\]

\(a)\) \(\mu E(f) < \varepsilon\),
\(b)\) \(|f(x) - f(y)| < \varepsilon\) for \(x, y \in X \setminus E(f), \; d(x, y) < \delta\),
\(c)\) \(|f(x)| \leq \lambda\) for \(x \in X \setminus E(f)\).

M.Fréchet (1927), E.Hanson (1933) give simple proof.
Theorem

\[S \subset L^0(X) \text{ is completely bounded if and only if } \]

\[\lim_{\lambda \to +\infty} \sup_{f \in S} \mu\{|f| > \lambda\} = 0 \]

and

\[\exists \eta \in \Omega \quad \lim_{\lambda \to +\infty} \sup_{f \in S} \inf_{g \in D_\eta(f)} \mu\{g > \lambda\} = 0. \]

This is quantitative form of Fréchet criterion.
Criterion with local smoothness

Theorem

$S \subset L^0(X)$ is completely bounded if and only if

$$\lim_{\lambda \to +\infty} \sup_{f \in S} \mu\{|f| > \lambda\} = 0$$

and

$$\exists \eta \in \Omega \lim_{\lambda \to +\infty} \sup_{f \in S} \inf_{g \in D_\eta(f)} \mu\{g > \lambda\} = 0.$$

This is quantitative form of Frečhe criterion.
Criterion with local smoothness

Theorem

\[S \subset L^0(X) \text{ is completely bounded if and only if} \]

\[
\lim_{\lambda \to +\infty} \sup_{f \in S} \mu\{|f| > \lambda\} = 0
\]

and

\[
\exists \eta \in \Omega \quad \lim_{\lambda \to +\infty} \sup_{f \in S} \inf_{g \in D_\eta(f)} \mu\{g > \lambda\} = 0.
\]

This is quantitative form of Fréchet criterion.
Classes $\varphi(L)$

Let Φ be the set of all functions $\varphi : \mathbb{R}_+ \rightarrow \mathbb{R}_+$

$$\varphi(t) \uparrow, \quad \varphi(0) = \varphi(+0) = 0, \quad \lim_{t \to +\infty} \varphi(t) = +\infty.$$

$$\Phi_1 = \{ \varphi \in \Phi : \varphi(t)/t \downarrow \}.$$

$$\varphi(L) = \left\{ f \in L^0(X) : \int_X \varphi(|f|)d\mu < +\infty \right\}.$$

If $\varphi \in \Phi_1$ then $\varphi(L)$ is complete metric space with respect to metric

$$d_\varphi(f, g) = \int_X \varphi(|f - g|)d\mu.$$
Classes $\varphi(L)$

Let Φ be the set of all functions $\varphi : \mathbb{R}_+ \rightarrow \mathbb{R}_+$

$$
\varphi(t) \uparrow, \quad \varphi(0) = \varphi(+0) = 0, \quad \lim_{t \rightarrow +\infty} \varphi(t) = +\infty.
$$

$$
\Phi_1 = \left\{ \varphi \in \Phi : \varphi(t)/t \downarrow \right\}.
$$

$$
\varphi(L) = \left\{ f \in L^0(X) : \int_X \varphi(|f|)d\mu < +\infty \right\}.
$$

If $\varphi \in \Phi_1$ then $\varphi(L)$ is complete metric space with respect to metric

$$
d_{\varphi}(f, g) = \int_X \varphi(|f - g|)d\mu.
$$
Classes $\varphi(L)$

Let Φ be the set of all functions $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$

$$\varphi(t) \uparrow, \quad \varphi(0) = \varphi(+0) = 0, \quad \lim_{t \to +\infty} \varphi(t) = +\infty.$$

$$\Phi_1 = \{ \varphi \in \Phi : \varphi(t)/t \downarrow \}.$$

$$\varphi(L) = \left\{ f \in L^0(X) : \int_X \varphi(|f|) d\mu < +\infty \right\}.$$

If $\varphi \in \Phi_1$ then $\varphi(L)$ is complete metric space with respect to metric

$$d_{\varphi}(f, g) = \int_X \varphi(|f - g|) d\mu.$$
Classes $\varphi(L)$

Let Φ be the set of all functions $\varphi : \mathbb{R}_+ \rightarrow \mathbb{R}_+$

$$\varphi(t) \uparrow, \quad \varphi(0) = \varphi(+0) = 0, \quad \lim_{t \rightarrow +\infty} \varphi(t) = +\infty.$$

$$\Phi_1 = \{ \varphi \in \Phi : \varphi(t)/t \downarrow \}.$$

$$\varphi(L) = \left\{ f \in L^0(X) : \int_X \varphi(|f|)d\mu < +\infty \right\}.$$

If $\varphi \in \Phi_1$ then $\varphi(L)$ is complete metric space with respect to metric

$$d_\varphi(f, g) = \int_X \varphi(|f - g|)d\mu.$$
Criterion with \(\varphi(L) \)

Theorem

The set \(S \subset L^0(X) \) is completely bounded if and only if there exists function \(\varphi \in \Phi_1 \) such that \(S \) is completely bounded in \(\varphi(L) \).
Criterion with maximal functions

\[N^\varphi_\eta f(x) = \sup_{B \ni x} \frac{1}{\eta(rB)} \int_B \varphi(f(x) - f(y)) \, d\mu(y). \]

Theorem

The set \(S \subset L^0(X) \) is completely bounded if and only if

\[\lim_{\lambda \to +\infty} \sup_{f \in S} \mu\{|f| > \lambda\} = 0 \]

and

\[\exists \eta \in \Omega, \varphi \in \Phi \quad \lim_{\lambda \to +\infty} \sup_{f \in S} \mu\{N^\varphi_\eta f > \lambda\} = 0 \]
Criterion with maximal functions

\[\mathcal{N}_\eta f(x) = \sup_{B \ni x} \frac{1}{\eta(rB)} \int_B \varphi(f(x) - f(y)) \, d\mu(y). \]

Theorem

The set \(S \subset L^0(X) \) is completely bounded if and only if

\[\lim_{\lambda \to +\infty} \sup_{f \in S} \mu\{|f| > \lambda\} = 0 \]

and

\[\exists \eta \in \Omega, \varphi \in \Phi \quad \lim_{\lambda \to +\infty} \sup_{f \in S} \mu\{\mathcal{N}_\eta f > \lambda\} = 0 \]
Classes C^p_η

For $0 < q < p$ denote by

$$C^p_{\eta,q} = \{ f \in L^0(X) : f, \mathcal{N}_\eta^q f \in L^p(X) \}.$$

$S \subset L^p$ completely bounded

$\quad \quad \uparrow$

$\exists \eta \in \Omega \quad S$ is bounded in $C^p_{\eta,q}$
Classes \(C_{\eta}^{p,q} \)

For \(0 < q < p \) denote by

\[
C_{\eta}^{p,q} = \left\{ f \in L^0(X) : f, \mathcal{N}_{\eta}^q f \in L^p(X) \right\}.
\]

\(S \subset L^p \quad \text{completely bounded} \)

\[
\uparrow
\]

\[\exists \eta \in \Omega \quad S \text{ is bounded in } C_{\eta}^{p,q} \]
Under some natural restriction on $\eta \in \Omega$ it is easy to see that

$$|f(x) - T_n f(x)| \leq c\eta \left(\frac{1}{n} \right) \mathcal{N}^1_\eta f(x), \quad x \in X.$$

Here $T_n f$ may be for example Jackson polynomials, or Cesaro means of Fourier series of function f and so on.

$$\|f - T_n f\|_{L^p} \leq c\eta \left(\frac{1}{n} \right) \|\mathcal{N}^1_\eta f\|_{L^p}.$$
Pointwise approximation

Under some natural restriction on $\eta \in \Omega$ it is easy to see that

$$|f(x) - T_n f(x)| \leq c\eta \left(\frac{1}{n}\right) \mathcal{N}_\eta f(x), \quad x \in X.$$

Here $T_n f$ may be for example Jackson polynomials, or Cesaro means of Fourier series of function f and so on.

$$\|f - T_n f\|_{L^p} \leq c\eta \left(\frac{1}{n}\right) \|\mathcal{N}_\eta f\|_{L^p}.$$
Pointwise approximation

Under some natural restriction on $\eta \in \Omega$ it is easy to see that

$$|f(x) - T_nf(x)| \leq c\eta \left(\frac{1}{n}\right) \mathcal{N}^1_\eta f(x), \quad x \in X.$$

Here T_nf may be for example Jackson polynomials, or Cesaro means of Fourier series of function f and so on.

$$\|f - T_nf\|_{L^p} \leq c\eta \left(\frac{1}{n}\right) \|\mathcal{N}^1_\eta f\|_{L^p}.$$